Uncertainty quantification for deep learning in particle accelerator applications
With the advent of increased computational resources and improved algorithms, machine learning-based models are being increasingly applied to complex problems in particle accelerators. However, such data-driven models may provide overly confident predictions with unknown errors and uncertainties. Fo...
Guardado en:
Autores principales: | Aashwin Ananda Mishra, Auralee Edelen, Adi Hanuka, Christopher Mayes |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Physical Society
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ad0580f82c8f4e67999e607a714d29f5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Medium-velocity superconducting cavity for high accelerating gradient continuous-wave hadron linear accelerators
por: K. McGee, et al.
Publicado: (2021) -
Beam-beam interaction in a dielectric laser accelerator electron-positron collider
por: R. Joel England, et al.
Publicado: (2021) -
Optimization of electron bunch quality using a chirped laser pulse in laser wakefield acceleration
por: Arohi Jain, et al.
Publicado: (2021) -
Emittance preserving thin film plasma mirrors for GeV scale laser plasma accelerators
por: A. Zingale, et al.
Publicado: (2021) -
Non-BPS supersymmetric 3pt amplitude for one massless, two equally massive particles
por: Bo-Ting Chen
Publicado: (2021)