Uncertainty quantification for deep learning in particle accelerator applications

With the advent of increased computational resources and improved algorithms, machine learning-based models are being increasingly applied to complex problems in particle accelerators. However, such data-driven models may provide overly confident predictions with unknown errors and uncertainties. Fo...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Aashwin Ananda Mishra, Auralee Edelen, Adi Hanuka, Christopher Mayes
Format: article
Langue:EN
Publié: American Physical Society 2021
Sujets:
Accès en ligne:https://doaj.org/article/ad0580f82c8f4e67999e607a714d29f5
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!