A Model-Agnostic Algorithm for Bayes Error Determination in Binary Classification

This paper presents the intrinsic limit determination algorithm (ILD Algorithm), a novel technique to determine the best possible performance, measured in terms of the AUC (area under the ROC curve) and accuracy, that can be obtained from a specific dataset in a binary classification problem with ca...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Umberto Michelucci, Michela Sperti, Dario Piga, Francesca Venturini, Marco A. Deriu
Format: article
Langue:EN
Publié: MDPI AG 2021
Sujets:
Accès en ligne:https://doaj.org/article/add5c84becaa4f53811e8bb6d2edb647
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!