Lack of cyclin D3 induces skeletal muscle fiber-type shifting, increased endurance performance and hypermetabolism

Abstract The mitogen-induced D-type cyclins (D1, D2 and D3) are regulatory subunits of the cyclin-dependent kinases CDK4 and CDK6 that drive progression through the G1 phase of the cell cycle. In skeletal muscle, cyclin D3 plays a unique function in controlling the proliferation/differentiation bala...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Silvia Giannattasio, Giacomo Giacovazzo, Agnese Bonato, Carla Caruso, Siro Luvisetto, Roberto Coccurello, Maurizia Caruso
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
R
Q
Acceso en línea:https://doaj.org/article/adf1b3c9b11f492ea0cdab5e5ffaa16c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:adf1b3c9b11f492ea0cdab5e5ffaa16c
record_format dspace
spelling oai:doaj.org-article:adf1b3c9b11f492ea0cdab5e5ffaa16c2021-12-02T11:41:02ZLack of cyclin D3 induces skeletal muscle fiber-type shifting, increased endurance performance and hypermetabolism10.1038/s41598-018-31090-52045-2322https://doaj.org/article/adf1b3c9b11f492ea0cdab5e5ffaa16c2018-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-018-31090-5https://doaj.org/toc/2045-2322Abstract The mitogen-induced D-type cyclins (D1, D2 and D3) are regulatory subunits of the cyclin-dependent kinases CDK4 and CDK6 that drive progression through the G1 phase of the cell cycle. In skeletal muscle, cyclin D3 plays a unique function in controlling the proliferation/differentiation balance of myogenic progenitor cells. Here, we show that cyclin D3 also performs a novel function, regulating muscle fiber type-specific gene expression. Mice lacking cyclin D3 display an increased number of myofibers with higher oxidative capacity in fast-twitch muscle groups, primarily composed of myofibers that utilize glycolytic metabolism. The remodeling of myofibers toward a slower, more oxidative phenotype is accompanied by enhanced running endurance and increased energy expenditure and fatty acid oxidation. In addition, gene expression profiling of cyclin D3−/− muscle reveals the upregulation of genes encoding proteins involved in the regulation of contractile function and metabolic markers specifically expressed in slow-twitch and fast-oxidative myofibers, many of which are targets of MEF2 and/or NFAT transcription factors. Furthermore, cyclin D3 can repress the calcineurin- or MEF2-dependent activation of a slow fiber-specific promoter in cultured muscle cells. These data suggest that cyclin D3 regulates muscle fiber type phenotype, and consequently whole body metabolism, by antagonizing the activity of MEF2 and/or NFAT.Silvia GiannattasioGiacomo GiacovazzoAgnese BonatoCarla CarusoSiro LuvisettoRoberto CoccurelloMaurizia CarusoNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 8, Iss 1, Pp 1-18 (2018)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Silvia Giannattasio
Giacomo Giacovazzo
Agnese Bonato
Carla Caruso
Siro Luvisetto
Roberto Coccurello
Maurizia Caruso
Lack of cyclin D3 induces skeletal muscle fiber-type shifting, increased endurance performance and hypermetabolism
description Abstract The mitogen-induced D-type cyclins (D1, D2 and D3) are regulatory subunits of the cyclin-dependent kinases CDK4 and CDK6 that drive progression through the G1 phase of the cell cycle. In skeletal muscle, cyclin D3 plays a unique function in controlling the proliferation/differentiation balance of myogenic progenitor cells. Here, we show that cyclin D3 also performs a novel function, regulating muscle fiber type-specific gene expression. Mice lacking cyclin D3 display an increased number of myofibers with higher oxidative capacity in fast-twitch muscle groups, primarily composed of myofibers that utilize glycolytic metabolism. The remodeling of myofibers toward a slower, more oxidative phenotype is accompanied by enhanced running endurance and increased energy expenditure and fatty acid oxidation. In addition, gene expression profiling of cyclin D3−/− muscle reveals the upregulation of genes encoding proteins involved in the regulation of contractile function and metabolic markers specifically expressed in slow-twitch and fast-oxidative myofibers, many of which are targets of MEF2 and/or NFAT transcription factors. Furthermore, cyclin D3 can repress the calcineurin- or MEF2-dependent activation of a slow fiber-specific promoter in cultured muscle cells. These data suggest that cyclin D3 regulates muscle fiber type phenotype, and consequently whole body metabolism, by antagonizing the activity of MEF2 and/or NFAT.
format article
author Silvia Giannattasio
Giacomo Giacovazzo
Agnese Bonato
Carla Caruso
Siro Luvisetto
Roberto Coccurello
Maurizia Caruso
author_facet Silvia Giannattasio
Giacomo Giacovazzo
Agnese Bonato
Carla Caruso
Siro Luvisetto
Roberto Coccurello
Maurizia Caruso
author_sort Silvia Giannattasio
title Lack of cyclin D3 induces skeletal muscle fiber-type shifting, increased endurance performance and hypermetabolism
title_short Lack of cyclin D3 induces skeletal muscle fiber-type shifting, increased endurance performance and hypermetabolism
title_full Lack of cyclin D3 induces skeletal muscle fiber-type shifting, increased endurance performance and hypermetabolism
title_fullStr Lack of cyclin D3 induces skeletal muscle fiber-type shifting, increased endurance performance and hypermetabolism
title_full_unstemmed Lack of cyclin D3 induces skeletal muscle fiber-type shifting, increased endurance performance and hypermetabolism
title_sort lack of cyclin d3 induces skeletal muscle fiber-type shifting, increased endurance performance and hypermetabolism
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/adf1b3c9b11f492ea0cdab5e5ffaa16c
work_keys_str_mv AT silviagiannattasio lackofcyclind3inducesskeletalmusclefibertypeshiftingincreasedenduranceperformanceandhypermetabolism
AT giacomogiacovazzo lackofcyclind3inducesskeletalmusclefibertypeshiftingincreasedenduranceperformanceandhypermetabolism
AT agnesebonato lackofcyclind3inducesskeletalmusclefibertypeshiftingincreasedenduranceperformanceandhypermetabolism
AT carlacaruso lackofcyclind3inducesskeletalmusclefibertypeshiftingincreasedenduranceperformanceandhypermetabolism
AT siroluvisetto lackofcyclind3inducesskeletalmusclefibertypeshiftingincreasedenduranceperformanceandhypermetabolism
AT robertococcurello lackofcyclind3inducesskeletalmusclefibertypeshiftingincreasedenduranceperformanceandhypermetabolism
AT mauriziacaruso lackofcyclind3inducesskeletalmusclefibertypeshiftingincreasedenduranceperformanceandhypermetabolism
_version_ 1718395479117529088