Predicting transcriptional activity of multiple site p53 mutants based on hybrid properties.
As an important tumor suppressor protein, reactivate mutated p53 was found in many kinds of human cancers and that restoring active p53 would lead to tumor regression. In this work, we developed a new computational method to predict the transcriptional activity for one-, two-, three- and four-site p...
Enregistré dans:
Auteurs principaux: | Tao Huang, Shen Niu, Zhongping Xu, Yun Huang, Xiangyin Kong, Yu-Dong Cai, Kuo-Chen Chou |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2011
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b0939d94abdd4b6782539087cdd4a629 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Prediction of nucleosome positioning based on transcription factor binding sites.
par: Xianfu Yi, et autres
Publié: (2010) -
Computational analysis of HIV-1 resistance based on gene expression profiles and the virus-host interaction network.
par: Tao Huang, et autres
Publié: (2011) -
Predicting functions of proteins in mouse based on weighted protein-protein interaction network and protein hybrid properties.
par: Lele Hu, et autres
Publié: (2011) -
Loss of wild-type p53 promotes mutant p53-driven metastasis through acquisition of survival and tumor-initiating properties
par: Mizuho Nakayama, et autres
Publié: (2020) -
Targeting codon 158 p53-mutant cancers via the induction of p53 acetylation
par: Li Ren Kong, et autres
Publié: (2020)