Bidirectional Wnt signaling between endoderm and mesoderm confers tracheal identity in mouse and human cells
How murine tracheal mesenchyme is specified during development is unclear. Here, the authors show a Wnt pathway target, Tbx4, is needed but this is regulated by Wnt signals from neighbouring tracheal epithelial cells, and take advantage of this knowledge to generate tracheal cartilage and smooth mus...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b0fc5e624a2e420cabcc656783db13c2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | How murine tracheal mesenchyme is specified during development is unclear. Here, the authors show a Wnt pathway target, Tbx4, is needed but this is regulated by Wnt signals from neighbouring tracheal epithelial cells, and take advantage of this knowledge to generate tracheal cartilage and smooth muscle on dish from mouse and human embryonic stem cells. |
---|