Advancing agricultural research using machine learning algorithms
Abstract Rising global population and climate change realities dictate that agricultural productivity must be accelerated. Results from current traditional research approaches are difficult to extrapolate to all possible fields because they are dependent on specific soil types, weather conditions, a...
Enregistré dans:
Auteurs principaux: | Spyridon Mourtzinis, Paul D. Esker, James E. Specht, Shawn P. Conley |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b24c1ea5518c4a0baa41b5a535eaecac |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A machine learning interpretation of the contribution of foliar fungicides to soybean yield in the north‐central United States
par: Denis A. Shah, et autres
Publié: (2021) -
Machine learning algorithms to assess the thermal behavior of a Moroccan agriculture greenhouse
par: Amine Allouhi, et autres
Publié: (2021) -
Planting method and seeding rate effect on whole and partitioned soybean yield
par: Spyros Mourtzinis, et autres
Publié: (2021) -
Research on target feature extraction and location positioning with machine learning algorithm
par: Li Licheng
Publié: (2020) - Advance Research in Agriculture & Veterinary Science