The art of using t-SNE for single-cell transcriptomics
t-SNE is widely used for dimensionality reduction and visualization of high-dimensional single-cell data. Here, the authors introduce a protocol to help avoid common shortcomings of t-SNE, for example, enabling preservation of the global structure of the data.
Guardado en:
Autores principales: | Dmitry Kobak, Philipp Berens |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b26f011209eb4d4294d5ab8dd1fde844 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Flow cytometry combined with viSNE for the analysis of microbial biofilms and detection of microplastics
por: Linn Sgier, et al.
Publicado: (2016) -
Single cell transcriptomics comes of age
por: Sarah Aldridge, et al.
Publicado: (2020) -
Inference of differentiation time for single cell transcriptomes using cell population reference data
por: Na Sun, et al.
Publicado: (2017) -
Interpretation of T cell states from single-cell transcriptomics data using reference atlases
por: Massimo Andreatta, et al.
Publicado: (2021) -
Deciphering intratumoral heterogeneity using integrated clonal tracking and single-cell transcriptome analyses
por: Humberto Contreras-Trujillo, et al.
Publicado: (2021)