Improved prediction of PARP inhibitor response and identification of synergizing agents through use of a novel gene expression signature generation algorithm
Personalized medicine: Signature-guided cancer therapy Personalized cancer therapy is one of the holy grails of oncology, as the ability to determine what treatment would best benefit a patient would serve not only to improve outcomes, but also mitigate side effects from less effective treatments. H...
Guardado en:
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b2d7262023a5464f9e1788ca4d9c8cbf |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b2d7262023a5464f9e1788ca4d9c8cbf |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b2d7262023a5464f9e1788ca4d9c8cbf2021-12-02T11:41:50ZImproved prediction of PARP inhibitor response and identification of synergizing agents through use of a novel gene expression signature generation algorithm10.1038/s41540-017-0011-62056-7189https://doaj.org/article/b2d7262023a5464f9e1788ca4d9c8cbf2017-03-01T00:00:00Zhttps://doi.org/10.1038/s41540-017-0011-6https://doaj.org/toc/2056-7189Personalized medicine: Signature-guided cancer therapy Personalized cancer therapy is one of the holy grails of oncology, as the ability to determine what treatment would best benefit a patient would serve not only to improve outcomes, but also mitigate side effects from less effective treatments. Here, we develop algorithms to predict what patients will respond to a given therapeutic modality, as well as ways to specifically target any observed phenotype, by integrating large scale data sets that profile cancer cell line gene expression and sensitivity to hundreds of drugs. Furthermore, we show how these gene expression signatures can be used to predict novel synergizing agents to further enhance the efficacy of these therapeutics. Taken together, this work stands to advance the era of personalized medicine by enabling precision medicine approaches in the clinic.Daniel J. McGrailCurtis Chun-Jen LinJeannine GarnettQingxin LiuWei MoHui DaiYiling LuQinghua YuZhenlin JuJun YinChristopher P. VellanoBryan HennessyGordon B. MillsShiaw-Yih LinNature PortfolioarticleBiology (General)QH301-705.5ENnpj Systems Biology and Applications, Vol 3, Iss 1, Pp 1-12 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Biology (General) QH301-705.5 |
spellingShingle |
Biology (General) QH301-705.5 Daniel J. McGrail Curtis Chun-Jen Lin Jeannine Garnett Qingxin Liu Wei Mo Hui Dai Yiling Lu Qinghua Yu Zhenlin Ju Jun Yin Christopher P. Vellano Bryan Hennessy Gordon B. Mills Shiaw-Yih Lin Improved prediction of PARP inhibitor response and identification of synergizing agents through use of a novel gene expression signature generation algorithm |
description |
Personalized medicine: Signature-guided cancer therapy Personalized cancer therapy is one of the holy grails of oncology, as the ability to determine what treatment would best benefit a patient would serve not only to improve outcomes, but also mitigate side effects from less effective treatments. Here, we develop algorithms to predict what patients will respond to a given therapeutic modality, as well as ways to specifically target any observed phenotype, by integrating large scale data sets that profile cancer cell line gene expression and sensitivity to hundreds of drugs. Furthermore, we show how these gene expression signatures can be used to predict novel synergizing agents to further enhance the efficacy of these therapeutics. Taken together, this work stands to advance the era of personalized medicine by enabling precision medicine approaches in the clinic. |
format |
article |
author |
Daniel J. McGrail Curtis Chun-Jen Lin Jeannine Garnett Qingxin Liu Wei Mo Hui Dai Yiling Lu Qinghua Yu Zhenlin Ju Jun Yin Christopher P. Vellano Bryan Hennessy Gordon B. Mills Shiaw-Yih Lin |
author_facet |
Daniel J. McGrail Curtis Chun-Jen Lin Jeannine Garnett Qingxin Liu Wei Mo Hui Dai Yiling Lu Qinghua Yu Zhenlin Ju Jun Yin Christopher P. Vellano Bryan Hennessy Gordon B. Mills Shiaw-Yih Lin |
author_sort |
Daniel J. McGrail |
title |
Improved prediction of PARP inhibitor response and identification of synergizing agents through use of a novel gene expression signature generation algorithm |
title_short |
Improved prediction of PARP inhibitor response and identification of synergizing agents through use of a novel gene expression signature generation algorithm |
title_full |
Improved prediction of PARP inhibitor response and identification of synergizing agents through use of a novel gene expression signature generation algorithm |
title_fullStr |
Improved prediction of PARP inhibitor response and identification of synergizing agents through use of a novel gene expression signature generation algorithm |
title_full_unstemmed |
Improved prediction of PARP inhibitor response and identification of synergizing agents through use of a novel gene expression signature generation algorithm |
title_sort |
improved prediction of parp inhibitor response and identification of synergizing agents through use of a novel gene expression signature generation algorithm |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/b2d7262023a5464f9e1788ca4d9c8cbf |
work_keys_str_mv |
AT danieljmcgrail improvedpredictionofparpinhibitorresponseandidentificationofsynergizingagentsthroughuseofanovelgeneexpressionsignaturegenerationalgorithm AT curtischunjenlin improvedpredictionofparpinhibitorresponseandidentificationofsynergizingagentsthroughuseofanovelgeneexpressionsignaturegenerationalgorithm AT jeanninegarnett improvedpredictionofparpinhibitorresponseandidentificationofsynergizingagentsthroughuseofanovelgeneexpressionsignaturegenerationalgorithm AT qingxinliu improvedpredictionofparpinhibitorresponseandidentificationofsynergizingagentsthroughuseofanovelgeneexpressionsignaturegenerationalgorithm AT weimo improvedpredictionofparpinhibitorresponseandidentificationofsynergizingagentsthroughuseofanovelgeneexpressionsignaturegenerationalgorithm AT huidai improvedpredictionofparpinhibitorresponseandidentificationofsynergizingagentsthroughuseofanovelgeneexpressionsignaturegenerationalgorithm AT yilinglu improvedpredictionofparpinhibitorresponseandidentificationofsynergizingagentsthroughuseofanovelgeneexpressionsignaturegenerationalgorithm AT qinghuayu improvedpredictionofparpinhibitorresponseandidentificationofsynergizingagentsthroughuseofanovelgeneexpressionsignaturegenerationalgorithm AT zhenlinju improvedpredictionofparpinhibitorresponseandidentificationofsynergizingagentsthroughuseofanovelgeneexpressionsignaturegenerationalgorithm AT junyin improvedpredictionofparpinhibitorresponseandidentificationofsynergizingagentsthroughuseofanovelgeneexpressionsignaturegenerationalgorithm AT christopherpvellano improvedpredictionofparpinhibitorresponseandidentificationofsynergizingagentsthroughuseofanovelgeneexpressionsignaturegenerationalgorithm AT bryanhennessy improvedpredictionofparpinhibitorresponseandidentificationofsynergizingagentsthroughuseofanovelgeneexpressionsignaturegenerationalgorithm AT gordonbmills improvedpredictionofparpinhibitorresponseandidentificationofsynergizingagentsthroughuseofanovelgeneexpressionsignaturegenerationalgorithm AT shiawyihlin improvedpredictionofparpinhibitorresponseandidentificationofsynergizingagentsthroughuseofanovelgeneexpressionsignaturegenerationalgorithm |
_version_ |
1718395420743303168 |