The Effect of Magnetic Field with Nanofluid on Heat Transfer in a Horizontal Pipe

This work presents an experimental study of heat transfer and flow of distilled water and metal oxide nanofluid Fe3O4-distilled water at concentrations of (φ = 0.3, 0.6, 0.9 %) by volume in a horizontal pipe with constant magnetic field. All the tests are carried out with Reynolds number range (2900...

Full description

Saved in:
Bibliographic Details
Main Authors: Abdulhassan A. Karamallah, Laith Jaafer Habeeb, Ali Habeeb Asker
Format: article
Language:EN
Published: Al-Khwarizmi College of Engineering – University of Baghdad 2016
Subjects:
Online Access:https://doaj.org/article/b368e400fe7c4b05a20f8c8af708a8e0
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This work presents an experimental study of heat transfer and flow of distilled water and metal oxide nanofluid Fe3O4-distilled water at concentrations of (φ = 0.3, 0.6, 0.9 %) by volume in a horizontal pipe with constant magnetic field. All the tests are carried out with Reynolds number range (2900-9820) and uniform heat flux (11262-19562 W/m2). The results show that, the nanofluid concentration and magnetic intensity increase, the Nusselt number increases. The maximum enhancement in Nusselt number with magnetic nanofluid is (5.4 %, 26.4 %, 42.7 %) for volume concentration (0.3, 0.6, 0.9 %) respectively. The enhancement is maximized with magnetic intensity (0.1, 0.2, 0.3 tesla) respectively to (43.9, 44.3, 46 %) with volume concentration (0.9 %). The heat transfer enhancement decreases with the increasing of Reynold number with using magnets. The friction factor increases with nano volume concentration increase and the intensity of magnet and decreases with increase of Reynold number.