A Decision Control Method for Autonomous Driving Based on Multi-Task Reinforcement Learning
Following man-made rules in the traditional control method of autonomous driving causes limitations for intelligent vehicles under various traffic conditions that need to be overcome by incorporating machine learning-based method. The latter is inherently suitable for simple tasks of autonomous driv...
Guardado en:
Autores principales: | Yingfeng Cai, Shaoqing Yang, Hai Wang, Chenglong Teng, Long Chen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b36ef47ce6f74f81b0b9f312e917770c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Fast Drivable Areas Estimation with Multi-Task Learning for Real-Time Autonomous Driving Assistant
por: Dong-Gyu Lee
Publicado: (2021) -
Tactical Decision-Making for Autonomous Driving Using Dueling Double Deep Q Network With Double Attention
por: Shuwei Zhang, et al.
Publicado: (2021) -
Surrounding Objects Detection and Tracking for Autonomous Driving Using LiDAR and Radar Fusion
por: Ze Liu, et al.
Publicado: (2021) -
Towards the Unified Principles for Level 5 Autonomous Vehicles
por: Jianqiang Wang, et al.
Publicado: (2021) -
BRUSHLESS VALVE ELECTRIC DRIVE WITH MINIMUM EQUIPMENT EXCESS FOR AUTONOMOUS FLOATING VEHICLE
por: Ya. B. Volyanskaya, et al.
Publicado: (2017)