Robustness of radiomic features in CT images with different slice thickness, comparing liver tumour and muscle
Abstract Radiomic image features are becoming a promising non-invasive method to obtain quantitative measurements for tumour classification and therapy response assessment in oncological research. However, despite its increasingly established application, there is a need for standardisation criteria...
Enregistré dans:
Auteurs principaux: | Lorena Escudero Sanchez, Leonardo Rundo, Andrew B. Gill, Matthew Hoare, Eva Mendes Serrao, Evis Sala |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b37af1e9968a49eb8272a6243d4ac728 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Reproducibility of CT-based radiomic features against image resampling and perturbations for tumour and healthy kidney in renal cancer patients
par: Margherita Mottola, et autres
Publié: (2021) -
Impact of GAN-based lesion-focused medical image super-resolution on the robustness of radiomic features
par: Erick Costa de Farias, et autres
Publié: (2021) -
Assessing robustness of carotid artery CT angiography radiomics in the identification of culprit lesions in cerebrovascular events
par: Elizabeth P. V. Le, et autres
Publié: (2021) -
MRI-derived radiomics model for baseline prediction of prostate cancer progression on active surveillance
par: Nikita Sushentsev, et autres
Publié: (2021) -
Author Correction: Image Quality and Radiation Dose for Prospectively Triggered Coronary CT Angiography: 128-Slice Single-Source CT versus First-Generation 64-Slice Dual-Source CT
par: Jin Gu, et autres
Publié: (2020)