A Dual Network for Super-Resolution and Semantic Segmentation of Sentinel-2 Imagery
There is a growing interest in the development of automated data processing workflows that provide reliable, high spatial resolution land cover maps. However, high-resolution remote sensing images are not always affordable. Taking into account the free availability of Sentinel-2 satellite data, in t...
Enregistré dans:
Auteurs principaux: | Saüc Abadal, Luis Salgueiro, Javier Marcello, Verónica Vilaplana |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b38e9069a39e4b2b9a813c90ee6d5ccc |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Region-Enhancing Network for Semantic Segmentation of Remote-Sensing Imagery
par: Bo Zhong, et autres
Publié: (2021) -
A Multi-Stage GAN for Multi-Organ Chest X-ray Image Generation and Segmentation
par: Giorgio Ciano, et autres
Publié: (2021) -
DSTnet: Deformable Spatio-Temporal Convolutional Residual Network for Video Super-Resolution
par: Anusha Khan, et autres
Publié: (2021) -
Mapping Relict Charcoal Hearths in New England Using Deep Convolutional Neural Networks and LiDAR Data
par: Ji Won Suh, et autres
Publié: (2021) -
An Approach to Semantically Segmenting Building Components and Outdoor Scenes Based on Multichannel Aerial Imagery Datasets
par: Yu Hou, et autres
Publié: (2021)