Nuclear atypia grading in breast cancer histopathological images based on CNN feature extraction and LSTM classification
Abstract Early diagnosis of breast cancer, the most common disease among women around the world, increases the chance of treatment and is highly important. Nuclear atypia grading in histopathological images plays an important role in the final diagnosis and grading of breast cancer. Grading images b...
Guardado en:
Autores principales: | Sanaz Karimi Jafarbigloo, Habibollah Danyali |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b41f54d631924deb839c3c22f8f18f36 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Constrained tolerance rough set in incomplete information systems
por: Renxia Wan, et al.
Publicado: (2021) -
An efficient hybrid recommendation model based on collaborative filtering recommender systems
por: Mohammed Fadhel Aljunid, et al.
Publicado: (2021) -
Low‐rank constrained weighted discriminative regression for multi‐view feature learning
por: Chao Zhang, et al.
Publicado: (2021) -
Deep imitation reinforcement learning for self‐driving by vision
por: Qijie Zou, et al.
Publicado: (2021) -
Design and analysis of recurrent neural network models with non‐linear activation functions for solving time‐varying quadratic programming problems
por: Xiaoyan Zhang, et al.
Publicado: (2021)