Nuclear atypia grading in breast cancer histopathological images based on CNN feature extraction and LSTM classification
Abstract Early diagnosis of breast cancer, the most common disease among women around the world, increases the chance of treatment and is highly important. Nuclear atypia grading in histopathological images plays an important role in the final diagnosis and grading of breast cancer. Grading images b...
Enregistré dans:
Auteurs principaux: | Sanaz Karimi Jafarbigloo, Habibollah Danyali |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Wiley
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b41f54d631924deb839c3c22f8f18f36 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Constrained tolerance rough set in incomplete information systems
par: Renxia Wan, et autres
Publié: (2021) -
An efficient hybrid recommendation model based on collaborative filtering recommender systems
par: Mohammed Fadhel Aljunid, et autres
Publié: (2021) -
Low‐rank constrained weighted discriminative regression for multi‐view feature learning
par: Chao Zhang, et autres
Publié: (2021) -
Deep imitation reinforcement learning for self‐driving by vision
par: Qijie Zou, et autres
Publié: (2021) -
Design and analysis of recurrent neural network models with non‐linear activation functions for solving time‐varying quadratic programming problems
par: Xiaoyan Zhang, et autres
Publié: (2021)