On Architecture Selection for Linear Inverse Problems with Untrained Neural Networks
In recent years, neural network based image priors have been shown to be highly effective for linear inverse problems, often significantly outperforming conventional methods that are based on sparsity and related notions. While pre-trained generative models are perhaps the most common, it has additi...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | article |
| Language: | EN |
| Published: |
MDPI AG
2021
|
| Subjects: | |
| Online Access: | https://doaj.org/article/b575e333a26d494baf46747b142feca2 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|