DeepRank: a deep learning framework for data mining 3D protein-protein interfaces
The authors present DeepRank, a deep learning framework for the data mining of large sets of 3D protein-protein interfaces (PPI). They use DeepRank to address two challenges in structural biology: distinguishing biological versus crystallographic PPIs in crystal structures, and secondly the ranking...
Enregistré dans:
Auteurs principaux: | Nicolas Renaud, Cunliang Geng, Sonja Georgievska, Francesco Ambrosetti, Lars Ridder, Dario F. Marzella, Manon F. Réau, Alexandre M. J. J. Bonvin, Li C. Xue |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b5e9d64b96e1438795a4aebfc8e1dd1c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Protein Design with Deep Learning
par: Marianne Defresne, et autres
Publié: (2021) -
DeepUEP: Prediction of Urine Excretory Proteins Using Deep Learning
par: Wei Du, et autres
Publié: (2020) -
SpotOn: High Accuracy Identification of Protein-Protein Interface Hot-Spots
par: Irina S. Moreira, et autres
Publié: (2017) -
Numerical Analysis of Thermal Environment in Deep Mining
par: Qi Li, et autres
Publié: (2021) -
Thermodynamic characteristics of deep space: hot hazard control case study in 1010-m-deep mine
par: Kaipeng Wang, et autres
Publié: (2021)