Peramalan Jumlah Penumpang Kereta Api di Indonesia dengan Resilient Back-Propagation (Rprop) Neural Network

Train scheduling affects the level of customer satisfaction and profitability of the train service provider. The prediction method of Back-propagation Neural Network (BPNN) has relatively slow convergence. Therefore, this study uses Resilient Back-propagation (Rprop) because it has a more fast conve...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mertha Endah Ervina, Rini Silvi, Intaniah Ratna Nur Wisisono
Formato: article
Lenguaje:EN
Publicado: Department of Mathematics, UIN Sunan Ampel Surabaya 2018
Materias:
Acceso en línea:https://doaj.org/article/b652028a1e394deb90516ab38c84fc0c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!