Peramalan Jumlah Penumpang Kereta Api di Indonesia dengan Resilient Back-Propagation (Rprop) Neural Network
Train scheduling affects the level of customer satisfaction and profitability of the train service provider. The prediction method of Back-propagation Neural Network (BPNN) has relatively slow convergence. Therefore, this study uses Resilient Back-propagation (Rprop) because it has a more fast conve...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Department of Mathematics, UIN Sunan Ampel Surabaya
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b652028a1e394deb90516ab38c84fc0c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b652028a1e394deb90516ab38c84fc0c |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b652028a1e394deb90516ab38c84fc0c2021-12-02T17:37:38ZPeramalan Jumlah Penumpang Kereta Api di Indonesia dengan Resilient Back-Propagation (Rprop) Neural Network2527-31592527-316710.15642/mantik.2018.4.2.90-99https://doaj.org/article/b652028a1e394deb90516ab38c84fc0c2018-10-01T00:00:00Zhttp://jurnalsaintek.uinsby.ac.id/index.php/mantik/article/view/310https://doaj.org/toc/2527-3159https://doaj.org/toc/2527-3167Train scheduling affects the level of customer satisfaction and profitability of the train service provider. The prediction method of Back-propagation Neural Network (BPNN) has relatively slow convergence. Therefore, this study uses Resilient Back-propagation (Rprop) because it has a more fast convergence and high accuracy. The model produced is a model for Jabodetabek, Java (non-Jabodetabek), Sumatra, and Indonesia. From the results of data analysis conducted, it can be concluded that the performance of neural network model with Resilient Back-propagation (Rprop) formed from training data gives very accurate prediction accuracy level with mean absolute percentage error (MAPE) less than 10% for each model. Then forecasting for the next 12 months conducted and the results compared with the data testing, Rprop provides a very high forecasting accuracy with MAPE value below 10%. The MAPE value for each forecasting the number of rail passengers is 7.50% for Jabodetabek, 5.89% for Java (non-Jabodetabek), 5.36% for Sumatra and 4.80% for Indonesia. That is, four neural network architectures with Rprop can be used for this case with very accurate forecasting results.Mertha Endah ErvinaRini SilviIntaniah Ratna Nur WisisonoDepartment of Mathematics, UIN Sunan Ampel SurabayaarticleResilient Back-propagation (Rprop)PeramalanPenumpang Kereta ApinnforMathematicsQA1-939ENMantik: Jurnal Matematika, Vol 4, Iss 2, Pp 90-99 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Resilient Back-propagation (Rprop) Peramalan Penumpang Kereta Api nnfor Mathematics QA1-939 |
spellingShingle |
Resilient Back-propagation (Rprop) Peramalan Penumpang Kereta Api nnfor Mathematics QA1-939 Mertha Endah Ervina Rini Silvi Intaniah Ratna Nur Wisisono Peramalan Jumlah Penumpang Kereta Api di Indonesia dengan Resilient Back-Propagation (Rprop) Neural Network |
description |
Train scheduling affects the level of customer satisfaction and profitability of the train service provider. The prediction method of Back-propagation Neural Network (BPNN) has relatively slow convergence. Therefore, this study uses Resilient Back-propagation (Rprop) because it has a more fast convergence and high accuracy. The model produced is a model for Jabodetabek, Java (non-Jabodetabek), Sumatra, and Indonesia. From the results of data analysis conducted, it can be concluded that the performance of neural network model with Resilient Back-propagation (Rprop) formed from training data gives very accurate prediction accuracy level with mean absolute percentage error (MAPE) less than 10% for each model. Then forecasting for the next 12 months conducted and the results compared with the data testing, Rprop provides a very high forecasting accuracy with MAPE value below 10%. The MAPE value for each forecasting the number of rail passengers is 7.50% for Jabodetabek, 5.89% for Java (non-Jabodetabek), 5.36% for Sumatra and 4.80% for Indonesia. That is, four neural network architectures with Rprop can be used for this case with very accurate forecasting results. |
format |
article |
author |
Mertha Endah Ervina Rini Silvi Intaniah Ratna Nur Wisisono |
author_facet |
Mertha Endah Ervina Rini Silvi Intaniah Ratna Nur Wisisono |
author_sort |
Mertha Endah Ervina |
title |
Peramalan Jumlah Penumpang Kereta Api di Indonesia dengan Resilient Back-Propagation (Rprop) Neural Network |
title_short |
Peramalan Jumlah Penumpang Kereta Api di Indonesia dengan Resilient Back-Propagation (Rprop) Neural Network |
title_full |
Peramalan Jumlah Penumpang Kereta Api di Indonesia dengan Resilient Back-Propagation (Rprop) Neural Network |
title_fullStr |
Peramalan Jumlah Penumpang Kereta Api di Indonesia dengan Resilient Back-Propagation (Rprop) Neural Network |
title_full_unstemmed |
Peramalan Jumlah Penumpang Kereta Api di Indonesia dengan Resilient Back-Propagation (Rprop) Neural Network |
title_sort |
peramalan jumlah penumpang kereta api di indonesia dengan resilient back-propagation (rprop) neural network |
publisher |
Department of Mathematics, UIN Sunan Ampel Surabaya |
publishDate |
2018 |
url |
https://doaj.org/article/b652028a1e394deb90516ab38c84fc0c |
work_keys_str_mv |
AT merthaendahervina peramalanjumlahpenumpangkeretaapidiindonesiadenganresilientbackpropagationrpropneuralnetwork AT rinisilvi peramalanjumlahpenumpangkeretaapidiindonesiadenganresilientbackpropagationrpropneuralnetwork AT intaniahratnanurwisisono peramalanjumlahpenumpangkeretaapidiindonesiadenganresilientbackpropagationrpropneuralnetwork |
_version_ |
1718379904933822464 |