Peramalan Jumlah Penumpang Kereta Api di Indonesia dengan Resilient Back-Propagation (Rprop) Neural Network

Train scheduling affects the level of customer satisfaction and profitability of the train service provider. The prediction method of Back-propagation Neural Network (BPNN) has relatively slow convergence. Therefore, this study uses Resilient Back-propagation (Rprop) because it has a more fast conve...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mertha Endah Ervina, Rini Silvi, Intaniah Ratna Nur Wisisono
Formato: article
Lenguaje:EN
Publicado: Department of Mathematics, UIN Sunan Ampel Surabaya 2018
Materias:
Acceso en línea:https://doaj.org/article/b652028a1e394deb90516ab38c84fc0c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b652028a1e394deb90516ab38c84fc0c
record_format dspace
spelling oai:doaj.org-article:b652028a1e394deb90516ab38c84fc0c2021-12-02T17:37:38ZPeramalan Jumlah Penumpang Kereta Api di Indonesia dengan Resilient Back-Propagation (Rprop) Neural Network2527-31592527-316710.15642/mantik.2018.4.2.90-99https://doaj.org/article/b652028a1e394deb90516ab38c84fc0c2018-10-01T00:00:00Zhttp://jurnalsaintek.uinsby.ac.id/index.php/mantik/article/view/310https://doaj.org/toc/2527-3159https://doaj.org/toc/2527-3167Train scheduling affects the level of customer satisfaction and profitability of the train service provider. The prediction method of Back-propagation Neural Network (BPNN) has relatively slow convergence. Therefore, this study uses Resilient Back-propagation (Rprop) because it has a more fast convergence and high accuracy. The model produced is a model for Jabodetabek, Java (non-Jabodetabek), Sumatra, and Indonesia. From the results of data analysis conducted, it can be concluded that the performance of neural network model with Resilient Back-propagation (Rprop) formed from training data gives very accurate prediction accuracy level with mean absolute percentage error (MAPE) less than 10% for each model. Then forecasting for the next 12 months conducted and the results compared with the data testing, Rprop provides a very high forecasting accuracy with MAPE value below 10%. The MAPE value for each forecasting the number of rail passengers is 7.50% for Jabodetabek, 5.89% for Java (non-Jabodetabek), 5.36% for Sumatra and 4.80% for Indonesia. That is, four neural network architectures with Rprop can be used for this case with very accurate forecasting results.Mertha Endah ErvinaRini SilviIntaniah Ratna Nur WisisonoDepartment of Mathematics, UIN Sunan Ampel SurabayaarticleResilient Back-propagation (Rprop)PeramalanPenumpang Kereta ApinnforMathematicsQA1-939ENMantik: Jurnal Matematika, Vol 4, Iss 2, Pp 90-99 (2018)
institution DOAJ
collection DOAJ
language EN
topic Resilient Back-propagation (Rprop)
Peramalan
Penumpang Kereta Api
nnfor
Mathematics
QA1-939
spellingShingle Resilient Back-propagation (Rprop)
Peramalan
Penumpang Kereta Api
nnfor
Mathematics
QA1-939
Mertha Endah Ervina
Rini Silvi
Intaniah Ratna Nur Wisisono
Peramalan Jumlah Penumpang Kereta Api di Indonesia dengan Resilient Back-Propagation (Rprop) Neural Network
description Train scheduling affects the level of customer satisfaction and profitability of the train service provider. The prediction method of Back-propagation Neural Network (BPNN) has relatively slow convergence. Therefore, this study uses Resilient Back-propagation (Rprop) because it has a more fast convergence and high accuracy. The model produced is a model for Jabodetabek, Java (non-Jabodetabek), Sumatra, and Indonesia. From the results of data analysis conducted, it can be concluded that the performance of neural network model with Resilient Back-propagation (Rprop) formed from training data gives very accurate prediction accuracy level with mean absolute percentage error (MAPE) less than 10% for each model. Then forecasting for the next 12 months conducted and the results compared with the data testing, Rprop provides a very high forecasting accuracy with MAPE value below 10%. The MAPE value for each forecasting the number of rail passengers is 7.50% for Jabodetabek, 5.89% for Java (non-Jabodetabek), 5.36% for Sumatra and 4.80% for Indonesia. That is, four neural network architectures with Rprop can be used for this case with very accurate forecasting results.
format article
author Mertha Endah Ervina
Rini Silvi
Intaniah Ratna Nur Wisisono
author_facet Mertha Endah Ervina
Rini Silvi
Intaniah Ratna Nur Wisisono
author_sort Mertha Endah Ervina
title Peramalan Jumlah Penumpang Kereta Api di Indonesia dengan Resilient Back-Propagation (Rprop) Neural Network
title_short Peramalan Jumlah Penumpang Kereta Api di Indonesia dengan Resilient Back-Propagation (Rprop) Neural Network
title_full Peramalan Jumlah Penumpang Kereta Api di Indonesia dengan Resilient Back-Propagation (Rprop) Neural Network
title_fullStr Peramalan Jumlah Penumpang Kereta Api di Indonesia dengan Resilient Back-Propagation (Rprop) Neural Network
title_full_unstemmed Peramalan Jumlah Penumpang Kereta Api di Indonesia dengan Resilient Back-Propagation (Rprop) Neural Network
title_sort peramalan jumlah penumpang kereta api di indonesia dengan resilient back-propagation (rprop) neural network
publisher Department of Mathematics, UIN Sunan Ampel Surabaya
publishDate 2018
url https://doaj.org/article/b652028a1e394deb90516ab38c84fc0c
work_keys_str_mv AT merthaendahervina peramalanjumlahpenumpangkeretaapidiindonesiadenganresilientbackpropagationrpropneuralnetwork
AT rinisilvi peramalanjumlahpenumpangkeretaapidiindonesiadenganresilientbackpropagationrpropneuralnetwork
AT intaniahratnanurwisisono peramalanjumlahpenumpangkeretaapidiindonesiadenganresilientbackpropagationrpropneuralnetwork
_version_ 1718379904933822464