Peramalan Jumlah Penumpang Kereta Api di Indonesia dengan Resilient Back-Propagation (Rprop) Neural Network

Train scheduling affects the level of customer satisfaction and profitability of the train service provider. The prediction method of Back-propagation Neural Network (BPNN) has relatively slow convergence. Therefore, this study uses Resilient Back-propagation (Rprop) because it has a more fast conve...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Mertha Endah Ervina, Rini Silvi, Intaniah Ratna Nur Wisisono
Format: article
Langue:EN
Publié: Department of Mathematics, UIN Sunan Ampel Surabaya 2018
Sujets:
Accès en ligne:https://doaj.org/article/b652028a1e394deb90516ab38c84fc0c
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!