Machine Learning and Data-Driven Techniques for the Control of Smart Power Generation Systems: An Uncertainty Handling Perspective
Due to growing concerns regarding climate change and environmental protection, smart power generation has become essential for the economical and safe operation of both conventional thermal power plants and sustainable energy. Traditional first-principle model-based methods are becoming insufficient...
Enregistré dans:
Auteurs principaux: | Li Sun, Fengqi You |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Elsevier
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b65f85a5c83243b6b2c87839a2f619e0 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Innovation and Development Strategies of China’s New-Generation Smart Vehicles Based on 4S Integration
par: Liu Zongwei, et autres
Publié: (2021) -
Unit Commitment under Uncertainty using Data-Driven Optimization with Clustering Techniques
par: Ning Zhao, et autres
Publié: (2021) -
Smart City Decision Making System Based on Event-driven Platform
par: Saric Andrej, et autres
Publié: (2021) -
Using machine learning and computer vision to estimate the angular velocity of wind turbines in smart grids remotely
par: Mahdi Bahaghighat, et autres
Publié: (2021) -
Uncertainty modeling of household appliance loads for smart energy management
par: Yu Wang, et autres
Publié: (2022)