Risk Factors of Restroke in Patients with Lacunar Cerebral Infarction Using Magnetic Resonance Imaging Image Features under Deep Learning Algorithm
This study was aimed to explore the magnetic resonance imaging (MRI) image features based on the fuzzy local information C-means clustering (FLICM) image segmentation method to analyze the risk factors of restroke in patients with lacunar infarction. In this study, based on the FLICM algorithm, the...
Enregistré dans:
Auteurs principaux: | Chunli Ma, Hong Li, Kui Zhang, Yuzhu Gao, Lei Yang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Hindawi-Wiley
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b7cf078304264a9080cc2eb9b70ece7e |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Magnetic Resonance Image Feature Analysis under Deep Learning in Diagnosis of Neurological Rehabilitation in Patients with Cerebrovascular Diseases
par: Xue Li, et autres
Publié: (2021) -
Magnetic Resonance Imaging Segmentation on the Basis of Boundary Tracking Algorithm in Lung Cancer Surgery
par: Chengmin Liu, et autres
Publié: (2021) -
Tic Disorder of Children Analyzed and Diagnosed by Magnetic Resonance Imaging Features under Convolutional Neural Network
par: Chunxia Wu, et autres
Publié: (2021) -
Computer-Aided Diagnosis of Children with Cerebral Palsy under Deep Learning Convolutional Neural Network Image Segmentation Model Combined with Three-Dimensional Cranial Magnetic Resonance Imaging
par: Rui Yang, et autres
Publié: (2021) -
Magnetic resonance imaging investigation of the bone conduction implant – a pilot study at 1.5 Tesla
par: Fredén Jansson KJ, et autres
Publié: (2015)