Radiomics machine learning study with a small sample size: Single random training-test set split may lead to unreliable results.
This study aims to determine how randomly splitting a dataset into training and test sets affects the estimated performance of a machine learning model and its gap from the test performance under different conditions, using real-world brain tumor radiomics data. We conducted two classification tasks...
Guardado en:
| Autores principales: | , , , , , |
|---|---|
| Formato: | article |
| Lenguaje: | EN |
| Publicado: |
Public Library of Science (PLoS)
2021
|
| Materias: | |
| Acceso en línea: | https://doaj.org/article/b7eeddeca55a457896778de5c6af09dc |
| Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|