Radiomics machine learning study with a small sample size: Single random training-test set split may lead to unreliable results.

This study aims to determine how randomly splitting a dataset into training and test sets affects the estimated performance of a machine learning model and its gap from the test performance under different conditions, using real-world brain tumor radiomics data. We conducted two classification tasks...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Chansik An, Yae Won Park, Sung Soo Ahn, Kyunghwa Han, Hwiyoung Kim, Seung-Koo Lee
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/b7eeddeca55a457896778de5c6af09dc
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Ejemplares similares