Machine-learning based reconstructions of primary and secondary climate variables from North American and European fossil pollen data

Abstract We test several quantitative algorithms as palaeoclimate reconstruction tools for North American and European fossil pollen data, using both classical methods and newer machine-learning approaches based on regression tree ensembles and artificial neural networks. We focus on the reconstruct...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: J. Sakari Salonen, Mikko Korpela, John W. Williams, Miska Luoto
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
R
Q
Acceso en línea:https://doaj.org/article/b8548e10953e4fd095bb0a622c57d84b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!