Machine-learning based reconstructions of primary and secondary climate variables from North American and European fossil pollen data
Abstract We test several quantitative algorithms as palaeoclimate reconstruction tools for North American and European fossil pollen data, using both classical methods and newer machine-learning approaches based on regression tree ensembles and artificial neural networks. We focus on the reconstruct...
Enregistré dans:
Auteurs principaux: | J. Sakari Salonen, Mikko Korpela, John W. Williams, Miska Luoto |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2019
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b8548e10953e4fd095bb0a622c57d84b |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Abrupt high-latitude climate events and decoupled seasonal trends during the Eemian
par: J. Sakari Salonen, et autres
Publié: (2018) -
Relationships between climate and phylogenetic community structure of fossil pollen assemblages are not constant during the last deglaciation.
par: Kavya Pradhan, et autres
Publié: (2021) -
North Atlantic variability and its links to European climate over the last 3000 years
par: Paola Moffa-Sánchez, et autres
Publié: (2017) -
Author Correction: North Atlantic variability and its links to European climate over the last 3000 years
par: Paola Moffa-Sánchez, et autres
Publié: (2018) -
Modern pollen-vegetation relationships in the Taihang Mountains: Towards the quantitative reconstruction of land-cover changes in the North China Plain
par: Nan Zhang, et autres
Publié: (2021)