Machine-learning based reconstructions of primary and secondary climate variables from North American and European fossil pollen data

Abstract We test several quantitative algorithms as palaeoclimate reconstruction tools for North American and European fossil pollen data, using both classical methods and newer machine-learning approaches based on regression tree ensembles and artificial neural networks. We focus on the reconstruct...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: J. Sakari Salonen, Mikko Korpela, John W. Williams, Miska Luoto
Format: article
Langue:EN
Publié: Nature Portfolio 2019
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/b8548e10953e4fd095bb0a622c57d84b
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!