Design and Stiffness Optimization of Bionic Docking Mechanism for Space Target Acquisition

Aiming at the soft contact problem of space docking, a bionic docking mechanism for space target acquisition is proposed to realize the buffering and unloading of six–dimensional spatial collision through flexible rotating and linear components. Using the Kane method, an integrated dynamic equation...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Sheng Xu, Ming Chu, Hanxu Sun
Format: article
Langue:EN
Publié: MDPI AG 2021
Sujets:
T
Accès en ligne:https://doaj.org/article/b857411d90a34128b8226b87edb711b7
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Aiming at the soft contact problem of space docking, a bionic docking mechanism for space target acquisition is proposed to realize the buffering and unloading of six–dimensional spatial collision through flexible rotating and linear components. Using the Kane method, an integrated dynamic equation of the bionic docking mechanism in space docking is established, and the stiffness optimization strategy is carried out based on angular momentum conservation. Based on the particle swarm optimization (PSO), a stiffness optimization scheme was realized. Through the numerical simulation of the bionic docking mechanism in space docking, the stiffness optimization was achieved and the soft contact machine process is verified. Finally, through the docking collision experiments in Adams, the results indicate that the proposed bionic docking mechanism can not only prolong the collision time to win time for space acquisition, but also buffer and unload the six–dimensional spatial collision caused by space target docking.