FastClone is a probabilistic tool for deconvoluting tumor heterogeneity in bulk-sequencing samples
Multiple algorithms exist for predicting heterogeneity and clonal architecture from the bulk sequencing of tumor tissue. Here, the authors report on an algorithm, FastClone, which was developed from a DREAM challenge and show that FastClone can accurately predict clonality in simulated data and data...
Guardado en:
Autores principales: | Yao Xiao, Xueqing Wang, Hongjiu Zhang, Peter J. Ulintz, Hongyang Li, Yuanfang Guan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b8a8a985e0b94c83996a18132f1a4e60 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Benchmarking pipelines for subclonal deconvolution of bulk tumour sequencing data
por: Georgette Tanner, et al.
Publicado: (2021) -
DeepSleep convolutional neural network allows accurate and fast detection of sleep arousal
por: Hongyang Li, et al.
Publicado: (2021) -
CloneSig can jointly infer intra-tumor heterogeneity and mutational signature activity in bulk tumor sequencing data
por: Judith Abécassis, et al.
Publicado: (2021) -
Bulk tissue cell type deconvolution with multi-subject single-cell expression reference
por: Xuran Wang, et al.
Publicado: (2019) -
Deconvolution of single-cell multi-omics layers reveals regulatory heterogeneity
por: Longqi Liu, et al.
Publicado: (2019)