Enhanced Thermal Conductivity of Polymer Composite by Adding Fishbone-like Silicon Carbide
The rapid development of chip technology has all put forward higher requirements for highly thermally conductive materials. In this work, a new type of material of Fishbone-like silicon carbide (SiC) material was used as the filler in a polyvinylidene fluoride (PVDF) matrix. The silicon carbide/poly...
Guardado en:
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b8c15bbe68204aecb1ea94f8508facf2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | The rapid development of chip technology has all put forward higher requirements for highly thermally conductive materials. In this work, a new type of material of Fishbone-like silicon carbide (SiC) material was used as the filler in a polyvinylidene fluoride (PVDF) matrix. The silicon carbide/polyvinylidene fluoride (SiC/PVDF) composites were successfully prepared with different loading by a simple mixing method. The thermal conductivity of SiC/PVDF composite reached 0.92 W m<sup>−1</sup> K<sup>−1</sup>, which is 470% higher than that of pure polymer. The results show that using the filler with a new structure to construct thermal conductivity networks is an effective way to improve the thermal conductivity of PVDF. This work provides a new idea for the further application in the field of electronic packaging. |
---|