Review on Active and Passive Remote Sensing Techniques for Road Extraction
Digital maps of road networks are a vital part of digital cities and intelligent transportation. In this paper, we provide a comprehensive review on road extraction based on various remote sensing data sources, including high-resolution images, hyperspectral images, synthetic aperture radar images,...
Enregistré dans:
Auteurs principaux: | Jianxin Jia, Haibin Sun, Changhui Jiang, Kirsi Karila, Mika Karjalainen, Eero Ahokas, Ehsan Khoramshahi, Peilun Hu, Chen Chen, Tianru Xue, Tinghuai Wang, Yuwei Chen, Juha Hyyppä |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b8f9b2a6184a455a9968b60d4002538b |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
PEMCNet: An Efficient Multi-Scale Point Feature Fusion Network for 3D LiDAR Point Cloud Classification
par: Genping Zhao, et autres
Publié: (2021) -
Assessing understory development in forest plantations using laser imaging detection and ranging (LiDAR)
par: HERNÁNDEZ,JAIME, et autres
Publié: (2013) -
Point2Wave: 3-D Point Cloud to Waveform Translation Using a Conditional Generative Adversarial Network With Dual Discriminators
par: Takayuki Shinohara, et autres
Publié: (2021) -
Estimating Historically Cleared and Forested Land in Massachusetts, USA, Using Airborne LiDAR and Archival Records
par: Katharine M. Johnson, et autres
Publié: (2021) -
A High-Resolution, Random Forest Approach to Mapping Depth-to-Bedrock across Shallow Overburden and Post-Glacial Terrain
par: Shane Furze, et autres
Publié: (2021)