Vision based supervised restricted Boltzmann machine helps to actuate novel shape memory alloy accurately
Abstract Extraordinary shape recovery capabilities of shape memory alloys (SMAs) have made them a crucial building block for the development of next-generation soft robotic systems and associated cognitive robotic controllers. In this study we desired to determine whether combining video data analys...
Guardado en:
Autores principales: | Ritaban Dutta, Cherry Chen, David Renshaw, Daniel Liang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b949d8434bfc466ebaecf0a4f65542a4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Unitary-coupled restricted Boltzmann machine ansatz for quantum simulations
por: Chang Yu Hsieh, et al.
Publicado: (2021) -
Modeling a population of retinal ganglion cells with restricted Boltzmann machines
por: Riccardo Volpi, et al.
Publicado: (2020) -
Adaptive hyperparameter updating for training restricted Boltzmann machines on quantum annealers
por: Guanglei Xu, et al.
Publicado: (2021) -
A Novel Restricted Boltzmann Machine Training Algorithm With Dynamic Tempering Chains
por: Xinyu Li, et al.
Publicado: (2021) -
Inverse problems for structured datasets using parallel TAP equations and restricted Boltzmann machines
por: Aurelien Decelle, et al.
Publicado: (2021)