Computational learning of features for automated colonic polyp classification
Abstract Shape, texture, and color are critical features for assessing the degree of dysplasia in colonic polyps. A comprehensive analysis of these features is presented in this paper. Shape features are extracted using generic Fourier descriptor. The nonsubsampled contourlet transform is used as te...
Enregistré dans:
Auteurs principaux: | Kangkana Bora, M. K. Bhuyan, Kunio Kasugai, Saurav Mallik, Zhongming Zhao |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b9ba95f3c47249c38cb8b7f3f0d80e71 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Detecting methylation signatures in neurodegenerative disease by density-based clustering of applications with reducing noise
par: Saurav Mallik, et autres
Publié: (2020) -
Prognostic role and biologic features of Musashi-2 expression in colon polyps and during colorectal cancer progression.
par: Leonid Kharin, et autres
Publié: (2021) -
Extraction of Key-Frames From Endoscopic Videos by Using Depth Information
par: Pradipta Sasmal, et autres
Publié: (2021) -
miRNA expression in colon polyps provides evidence for a multihit model of colon cancer.
par: Ann L Oberg, et autres
Publié: (2011) -
Colonoscopy polyp detection and classification: Dataset creation and comparative evaluations.
par: Kaidong Li, et autres
Publié: (2021)