An adaptive threshold neuron for recurrent spiking neural networks with nanodevice hardware implementation
Recurrent spiking neural networks have garnered interest due to their energy efficiency; however, they suffer from lower accuracy compared to conventional neural networks. Here, the authors present an alternative neuron model and its efficient hardware implementation, demonstrating high classificati...
Guardado en:
Autores principales: | Ahmed Shaban, Sai Sukruth Bezugam, Manan Suri |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b9e65d38422b411399499f0831f7338c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Neural dynamics as sampling: a model for stochastic computation in recurrent networks of spiking neurons.
por: Lars Buesing, et al.
Publicado: (2011) -
A Scatter-and-Gather Spiking Convolutional Neural Network on a Reconfigurable Neuromorphic Hardware
por: Chenglong Zou, et al.
Publicado: (2021) -
AN OVERVIEW OF NANOELECTRONICS AND NANODEVICES
por: OYUBU AKPOVI OYUBU, et al.
Publicado: (2020) -
Spike-threshold adaptation predicted by membrane potential dynamics in vivo.
por: Bertrand Fontaine, et al.
Publicado: (2014) -
A solution to the learning dilemma for recurrent networks of spiking neurons
por: Guillaume Bellec, et al.
Publicado: (2020)