An adaptive threshold neuron for recurrent spiking neural networks with nanodevice hardware implementation
Recurrent spiking neural networks have garnered interest due to their energy efficiency; however, they suffer from lower accuracy compared to conventional neural networks. Here, the authors present an alternative neuron model and its efficient hardware implementation, demonstrating high classificati...
Enregistré dans:
Auteurs principaux: | Ahmed Shaban, Sai Sukruth Bezugam, Manan Suri |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b9e65d38422b411399499f0831f7338c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Neural dynamics as sampling: a model for stochastic computation in recurrent networks of spiking neurons.
par: Lars Buesing, et autres
Publié: (2011) -
A Scatter-and-Gather Spiking Convolutional Neural Network on a Reconfigurable Neuromorphic Hardware
par: Chenglong Zou, et autres
Publié: (2021) -
AN OVERVIEW OF NANOELECTRONICS AND NANODEVICES
par: OYUBU AKPOVI OYUBU, et autres
Publié: (2020) -
Spike-threshold adaptation predicted by membrane potential dynamics in vivo.
par: Bertrand Fontaine, et autres
Publié: (2014) -
A solution to the learning dilemma for recurrent networks of spiking neurons
par: Guillaume Bellec, et autres
Publié: (2020)