KBoost: a new method to infer gene regulatory networks from gene expression data
Abstract Reconstructing gene regulatory networks is crucial to understand biological processes and holds potential for developing personalized treatment. Yet, it is still an open problem as state-of-the-art algorithms are often not able to process large amounts of data within reasonable time. Furthe...
Guardado en:
Autores principales: | Luis F. Iglesias-Martinez, Barbara De Kegel, Walter Kolch |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b9e71a6b6eac4a62b8fa270b92a39d84 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Gene regulatory network inference from sparsely sampled noisy data
por: Atte Aalto, et al.
Publicado: (2020) -
Inferring regulatory networks from expression data using tree-based methods.
por: Vân Anh Huynh-Thu, et al.
Publicado: (2010) -
Inferring a transcriptional regulatory network from gene expression data using nonlinear manifold embedding.
por: Hossein Zare, et al.
Publicado: (2011) -
PEPN-GRN: A Petri net-based approach for the inference of gene regulatory networks from noisy gene expression data.
por: Deepika Vatsa, et al.
Publicado: (2021) -
Improved inference of gene regulatory networks through integrated Bayesian clustering and dynamic modeling of time-course expression data.
por: Brian Godsey
Publicado: (2013)