KBoost: a new method to infer gene regulatory networks from gene expression data
Abstract Reconstructing gene regulatory networks is crucial to understand biological processes and holds potential for developing personalized treatment. Yet, it is still an open problem as state-of-the-art algorithms are often not able to process large amounts of data within reasonable time. Furthe...
Enregistré dans:
Auteurs principaux: | Luis F. Iglesias-Martinez, Barbara De Kegel, Walter Kolch |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b9e71a6b6eac4a62b8fa270b92a39d84 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Gene regulatory network inference from sparsely sampled noisy data
par: Atte Aalto, et autres
Publié: (2020) -
Inferring regulatory networks from expression data using tree-based methods.
par: Vân Anh Huynh-Thu, et autres
Publié: (2010) -
Inferring a transcriptional regulatory network from gene expression data using nonlinear manifold embedding.
par: Hossein Zare, et autres
Publié: (2011) -
PEPN-GRN: A Petri net-based approach for the inference of gene regulatory networks from noisy gene expression data.
par: Deepika Vatsa, et autres
Publié: (2021) -
Improved inference of gene regulatory networks through integrated Bayesian clustering and dynamic modeling of time-course expression data.
par: Brian Godsey
Publié: (2013)