A hierarchical approach to removal of unwanted variation for large-scale metabolomics data
Mass spectrometry-based metabolomics is a powerful method for profiling large clinical cohorts but batch variations can obscure biologically meaningful differences. Here, the authors develop a computational workflow that removes unwanted data variation while preserving biologically relevant informat...
Guardado en:
Autores principales: | Taiyun Kim, Owen Tang, Stephen T. Vernon, Katharine A. Kott, Yen Chin Koay, John Park, David E. James, Stuart M. Grieve, Terence P. Speed, Pengyi Yang, Gemma A. Figtree, John F. O’Sullivan, Jean Yee Hwa Yang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b9f05e117dcb4f2a9c9c505e343dfa63 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Hippocampal GABA enables inhibitory control over unwanted thoughts
por: Taylor W. Schmitz, et al.
Publicado: (2017) -
A benchmark study of simulation methods for single-cell RNA sequencing data
por: Yue Cao, et al.
Publicado: (2021) -
Improved Design of Uniform SIW Leaky Wave Antenna With Suppression of Unwanted Mode
por: Amin Mahmoodi Malekshah, et al.
Publicado: (2021) -
Comparing Health Condition Between Wanted and Unwanted Pregnancy of Women in Hamadan City
por: Fatemeh Shobeiri, et al.
Publicado: (2019) -
Suppression of unwanted CRISPR-Cas9 editing by co-administration of catalytically inactivating truncated guide RNAs
por: John C. Rose, et al.
Publicado: (2020)