A hierarchical approach to removal of unwanted variation for large-scale metabolomics data

Mass spectrometry-based metabolomics is a powerful method for profiling large clinical cohorts but batch variations can obscure biologically meaningful differences. Here, the authors develop a computational workflow that removes unwanted data variation while preserving biologically relevant informat...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Taiyun Kim, Owen Tang, Stephen T. Vernon, Katharine A. Kott, Yen Chin Koay, John Park, David E. James, Stuart M. Grieve, Terence P. Speed, Pengyi Yang, Gemma A. Figtree, John F. O’Sullivan, Jean Yee Hwa Yang
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/b9f05e117dcb4f2a9c9c505e343dfa63
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Ejemplares similares