A hierarchical approach to removal of unwanted variation for large-scale metabolomics data
Mass spectrometry-based metabolomics is a powerful method for profiling large clinical cohorts but batch variations can obscure biologically meaningful differences. Here, the authors develop a computational workflow that removes unwanted data variation while preserving biologically relevant informat...
Enregistré dans:
Auteurs principaux: | Taiyun Kim, Owen Tang, Stephen T. Vernon, Katharine A. Kott, Yen Chin Koay, John Park, David E. James, Stuart M. Grieve, Terence P. Speed, Pengyi Yang, Gemma A. Figtree, John F. O’Sullivan, Jean Yee Hwa Yang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b9f05e117dcb4f2a9c9c505e343dfa63 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Hippocampal GABA enables inhibitory control over unwanted thoughts
par: Taylor W. Schmitz, et autres
Publié: (2017) -
A benchmark study of simulation methods for single-cell RNA sequencing data
par: Yue Cao, et autres
Publié: (2021) -
Improved Design of Uniform SIW Leaky Wave Antenna With Suppression of Unwanted Mode
par: Amin Mahmoodi Malekshah, et autres
Publié: (2021) -
Comparing Health Condition Between Wanted and Unwanted Pregnancy of Women in Hamadan City
par: Fatemeh Shobeiri, et autres
Publié: (2019) -
Suppression of unwanted CRISPR-Cas9 editing by co-administration of catalytically inactivating truncated guide RNAs
par: John C. Rose, et autres
Publié: (2020)