Stable, Low Power and Bit-Interleaving Aware SRAM Memory for Multi-Core Processing Elements
The machine learning and convolutional neural network (CNN)-based intelligent artificial accelerator needs significant parallel data processing from the cache memory. The separate read port is mostly used to design built-in computational memory (CRAM) to reduce the data processing bottleneck. This m...
Enregistré dans:
Auteurs principaux: | Nandakishor Yadav, Youngbae Kim, Shuai Li, Kyuwon Ken Choi |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/ba7d2eb2ee1949f5af18969e8295843e |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Analysis and Optimization of Defect Generation Due to Mechanical Stress in High-Density SRAM
par: Kazunari Ishimaru, et autres
Publié: (2021) -
Computing In-Memory Design Based on Double Word Line and Double Threshold 4T SRAM
par: LIN Zhiting, NIU Jianchao+, WU Xiulong, PENG Chunyu
Publié: (2021) -
An SRAM Compiler for Monolithic-3-D Integrated Circuit With Carbon Nanotube Transistors
par: Daehyun Kim, et autres
Publié: (2021) -
Development and Validation of a Web-Based Reading Test for Normal and Low Vision Patients
par: Labiris G, et autres
Publié: (2021) -
Desobedecer el lenguaje : alteridad, lectura y escritura /
par: Skliar, Carlos
Publié: (2015)