Effect of data leakage in brain MRI classification using 2D convolutional neural networks
Abstract In recent years, 2D convolutional neural networks (CNNs) have been extensively used to diagnose neurological diseases from magnetic resonance imaging (MRI) data due to their potential to discern subtle and intricate patterns. Despite the high performances reported in numerous studies, devel...
Enregistré dans:
Auteurs principaux: | Ekin Yagis, Selamawet Workalemahu Atnafu, Alba García Seco de Herrera, Chiara Marzi, Riccardo Scheda, Marco Giannelli, Carlo Tessa, Luca Citi, Stefano Diciotti |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/ba8c3daef34b44d98cdadf6e89dba3e3 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
MR scanner systems should be adequately characterized in diffusion-MRI of the breast.
par: Marco Giannelli, et autres
Publié: (2014) -
An Efficient Methodology for Brain MRI Classification Based on DWT and Convolutional Neural Network
par: Muhammad Fayaz, et autres
Publié: (2021) -
Water leakage detection and localization using hydraulic modeling and classification
par: Eliyas Girma Mohammed, et autres
Publié: (2021) -
Resting state alpha oscillatory activity is a valid and reliable marker of schizotypy
par: Jelena Trajkovic, et autres
Publié: (2021) -
Publisher Correction: Resting state alpha oscillatory activity is a valid and reliable marker of schizotypy
par: Jelena Trajkovic, et autres
Publié: (2021)