DisA Restrains the Processing and Cleavage of Reversed Replication Forks by the RuvAB-RecU Resolvasome

DNA lesions that impede fork progression cause replisome stalling and threaten genome stability. <i>Bacillus subtilis</i> RecA, at a lesion-containing gap, interacts with and facilitates DisA pausing at these branched intermediates. Paused DisA suppresses its synthesis of the essential c...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Carolina Gándara, Rubén Torres, Begoña Carrasco, Silvia Ayora, Juan C. Alonso
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/baa81b4f188b4ffa8959324883e7bcf4
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:DNA lesions that impede fork progression cause replisome stalling and threaten genome stability. <i>Bacillus subtilis</i> RecA, at a lesion-containing gap, interacts with and facilitates DisA pausing at these branched intermediates. Paused DisA suppresses its synthesis of the essential c-di-AMP messenger. The RuvAB-RecU resolvasome branch migrates and resolves formed Holliday junctions (HJ). We show that DisA prevents DNA degradation. DisA, which interacts with RuvB, binds branched structures, and reduces the RuvAB DNA-dependent ATPase activity. DisA pre-bound to HJ DNA limits RuvAB and RecU activities, but such inhibition does not occur if the RuvAB- or RecU-HJ DNA complexes are pre-formed. RuvAB or RecU pre-bound to HJ DNA strongly inhibits DisA-mediated synthesis of c-di-AMP, and indirectly blocks cell proliferation. We propose that DisA limits RuvAB-mediated fork remodeling and RecU-mediated HJ cleavage to provide time for damage removal and replication restart in order to preserve genome integrity.