Optical Recognition of Handwritten Logic Formulas Using Neural Networks
In this paper, we present a handwritten character recognition (HCR) system that aims to recognize first-order logic handwritten formulas and create editable text files of the recognized formulas. Dense feedforward neural networks (NNs) are utilized, and their performance is examined under various tr...
Enregistré dans:
Auteurs principaux: | Vaios Ampelakiotis, Isidoros Perikos, Ioannis Hatzilygeroudis, George Tsihrintzis |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/bac261d9ab684d67a521b64faad04007 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Automatic Image Characterization of Psoriasis Lesions
par: Javier Martínez-Torres, et autres
Publié: (2021) -
TRANSFER LEARNING BASED OFFLINE YORÙBÁ HANDWRITTEN CHARACTER RECOGNITION SYSTEM
par: OLUWASHINA OYENIRAN, et autres
Publié: (2021) -
K-Nearest Neighbor for Recognize Handwritten Arabic Character
par: Muhammad Athoillah
Publié: (2019) -
3D Model Registration-Based Batch Wafer-ID Recognition Algorithm
par: Fang Cao, et autres
Publié: (2021) -
Study on character recognition algorithm for end face of bundled special steel bars
par: Fuxiang ZHANG, et autres
Publié: (2021)