Effect on speech emotion classification of a feature selection approach using a convolutional neural network
Speech emotion recognition (SER) is a challenging issue because it is not clear which features are effective for classification. Emotionally related features are always extracted from speech signals for emotional classification. Handcrafted features are mainly used for emotional identification from...
Guardado en:
Autores principales: | Ammar Amjad, Lal Khan, Hsien-Tsung Chang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bbf3afa8d45b4e9eb37979e8193d2f28 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Novel Heterogeneous Parallel Convolution Bi-LSTM for Speech Emotion Recognition
por: Huiyun Zhang, et al.
Publicado: (2021) -
Data Collection, Modeling, and Classification for Gunshot and Gunshot-like Audio Events: A Case Study
por: Rajesh Baliram Singh, et al.
Publicado: (2021) -
Deep Cross-Corpus Speech Emotion Recognition: Recent Advances and Perspectives
por: Shiqing Zhang, et al.
Publicado: (2021) -
Circular convolution-based feature extraction algorithm for classification of high-dimensional datasets
por: Tajanpure Rupali, et al.
Publicado: (2021) -
HUMAN ACTIVITY DETECTION AND ACTION RECOGNITION IN VIDEOS USING CONVOLUTIONAL NEURAL NETWORKS
por: Jagadeesh Basavaiah, et al.
Publicado: (2020)