Effect on speech emotion classification of a feature selection approach using a convolutional neural network
Speech emotion recognition (SER) is a challenging issue because it is not clear which features are effective for classification. Emotionally related features are always extracted from speech signals for emotional classification. Handcrafted features are mainly used for emotional identification from...
Enregistré dans:
Auteurs principaux: | Ammar Amjad, Lal Khan, Hsien-Tsung Chang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
PeerJ Inc.
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/bbf3afa8d45b4e9eb37979e8193d2f28 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A Novel Heterogeneous Parallel Convolution Bi-LSTM for Speech Emotion Recognition
par: Huiyun Zhang, et autres
Publié: (2021) -
Data Collection, Modeling, and Classification for Gunshot and Gunshot-like Audio Events: A Case Study
par: Rajesh Baliram Singh, et autres
Publié: (2021) -
Deep Cross-Corpus Speech Emotion Recognition: Recent Advances and Perspectives
par: Shiqing Zhang, et autres
Publié: (2021) -
Circular convolution-based feature extraction algorithm for classification of high-dimensional datasets
par: Tajanpure Rupali, et autres
Publié: (2021) -
HUMAN ACTIVITY DETECTION AND ACTION RECOGNITION IN VIDEOS USING CONVOLUTIONAL NEURAL NETWORKS
par: Jagadeesh Basavaiah, et autres
Publié: (2020)