Predicting treatment benefit in multiple myeloma through simulation of alternative treatment effects
Selection of the right cancer treatment is still a challenge. Here, the authors introduce a framework to analyze treatment benefits, using the idea that patients with similar genetic tumor profiles receiving different treatments can be used to model their responses to the alternative treatment.
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bc84203d4d9b4efaa0dbb9de2ebf654a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:bc84203d4d9b4efaa0dbb9de2ebf654a |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:bc84203d4d9b4efaa0dbb9de2ebf654a2021-12-02T16:56:54ZPredicting treatment benefit in multiple myeloma through simulation of alternative treatment effects10.1038/s41467-018-05348-52041-1723https://doaj.org/article/bc84203d4d9b4efaa0dbb9de2ebf654a2018-07-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-05348-5https://doaj.org/toc/2041-1723Selection of the right cancer treatment is still a challenge. Here, the authors introduce a framework to analyze treatment benefits, using the idea that patients with similar genetic tumor profiles receiving different treatments can be used to model their responses to the alternative treatment.Joske UbelsPieter SonneveldErik H. van BeersAnnemiek BroijlMartin H. van VlietJeroen de RidderNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-10 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Joske Ubels Pieter Sonneveld Erik H. van Beers Annemiek Broijl Martin H. van Vliet Jeroen de Ridder Predicting treatment benefit in multiple myeloma through simulation of alternative treatment effects |
description |
Selection of the right cancer treatment is still a challenge. Here, the authors introduce a framework to analyze treatment benefits, using the idea that patients with similar genetic tumor profiles receiving different treatments can be used to model their responses to the alternative treatment. |
format |
article |
author |
Joske Ubels Pieter Sonneveld Erik H. van Beers Annemiek Broijl Martin H. van Vliet Jeroen de Ridder |
author_facet |
Joske Ubels Pieter Sonneveld Erik H. van Beers Annemiek Broijl Martin H. van Vliet Jeroen de Ridder |
author_sort |
Joske Ubels |
title |
Predicting treatment benefit in multiple myeloma through simulation of alternative treatment effects |
title_short |
Predicting treatment benefit in multiple myeloma through simulation of alternative treatment effects |
title_full |
Predicting treatment benefit in multiple myeloma through simulation of alternative treatment effects |
title_fullStr |
Predicting treatment benefit in multiple myeloma through simulation of alternative treatment effects |
title_full_unstemmed |
Predicting treatment benefit in multiple myeloma through simulation of alternative treatment effects |
title_sort |
predicting treatment benefit in multiple myeloma through simulation of alternative treatment effects |
publisher |
Nature Portfolio |
publishDate |
2018 |
url |
https://doaj.org/article/bc84203d4d9b4efaa0dbb9de2ebf654a |
work_keys_str_mv |
AT joskeubels predictingtreatmentbenefitinmultiplemyelomathroughsimulationofalternativetreatmenteffects AT pietersonneveld predictingtreatmentbenefitinmultiplemyelomathroughsimulationofalternativetreatmenteffects AT erikhvanbeers predictingtreatmentbenefitinmultiplemyelomathroughsimulationofalternativetreatmenteffects AT annemiekbroijl predictingtreatmentbenefitinmultiplemyelomathroughsimulationofalternativetreatmenteffects AT martinhvanvliet predictingtreatmentbenefitinmultiplemyelomathroughsimulationofalternativetreatmenteffects AT jeroenderidder predictingtreatmentbenefitinmultiplemyelomathroughsimulationofalternativetreatmenteffects |
_version_ |
1718382703273836544 |