Predicting treatment benefit in multiple myeloma through simulation of alternative treatment effects

Selection of the right cancer treatment is still a challenge. Here, the authors introduce a framework to analyze treatment benefits, using the idea that patients with similar genetic tumor profiles receiving different treatments can be used to model their responses to the alternative treatment.

Guardado en:
Detalles Bibliográficos
Autores principales: Joske Ubels, Pieter Sonneveld, Erik H. van Beers, Annemiek Broijl, Martin H. van Vliet, Jeroen de Ridder
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/bc84203d4d9b4efaa0dbb9de2ebf654a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:bc84203d4d9b4efaa0dbb9de2ebf654a
record_format dspace
spelling oai:doaj.org-article:bc84203d4d9b4efaa0dbb9de2ebf654a2021-12-02T16:56:54ZPredicting treatment benefit in multiple myeloma through simulation of alternative treatment effects10.1038/s41467-018-05348-52041-1723https://doaj.org/article/bc84203d4d9b4efaa0dbb9de2ebf654a2018-07-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-05348-5https://doaj.org/toc/2041-1723Selection of the right cancer treatment is still a challenge. Here, the authors introduce a framework to analyze treatment benefits, using the idea that patients with similar genetic tumor profiles receiving different treatments can be used to model their responses to the alternative treatment.Joske UbelsPieter SonneveldErik H. van BeersAnnemiek BroijlMartin H. van VlietJeroen de RidderNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-10 (2018)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Joske Ubels
Pieter Sonneveld
Erik H. van Beers
Annemiek Broijl
Martin H. van Vliet
Jeroen de Ridder
Predicting treatment benefit in multiple myeloma through simulation of alternative treatment effects
description Selection of the right cancer treatment is still a challenge. Here, the authors introduce a framework to analyze treatment benefits, using the idea that patients with similar genetic tumor profiles receiving different treatments can be used to model their responses to the alternative treatment.
format article
author Joske Ubels
Pieter Sonneveld
Erik H. van Beers
Annemiek Broijl
Martin H. van Vliet
Jeroen de Ridder
author_facet Joske Ubels
Pieter Sonneveld
Erik H. van Beers
Annemiek Broijl
Martin H. van Vliet
Jeroen de Ridder
author_sort Joske Ubels
title Predicting treatment benefit in multiple myeloma through simulation of alternative treatment effects
title_short Predicting treatment benefit in multiple myeloma through simulation of alternative treatment effects
title_full Predicting treatment benefit in multiple myeloma through simulation of alternative treatment effects
title_fullStr Predicting treatment benefit in multiple myeloma through simulation of alternative treatment effects
title_full_unstemmed Predicting treatment benefit in multiple myeloma through simulation of alternative treatment effects
title_sort predicting treatment benefit in multiple myeloma through simulation of alternative treatment effects
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/bc84203d4d9b4efaa0dbb9de2ebf654a
work_keys_str_mv AT joskeubels predictingtreatmentbenefitinmultiplemyelomathroughsimulationofalternativetreatmenteffects
AT pietersonneveld predictingtreatmentbenefitinmultiplemyelomathroughsimulationofalternativetreatmenteffects
AT erikhvanbeers predictingtreatmentbenefitinmultiplemyelomathroughsimulationofalternativetreatmenteffects
AT annemiekbroijl predictingtreatmentbenefitinmultiplemyelomathroughsimulationofalternativetreatmenteffects
AT martinhvanvliet predictingtreatmentbenefitinmultiplemyelomathroughsimulationofalternativetreatmenteffects
AT jeroenderidder predictingtreatmentbenefitinmultiplemyelomathroughsimulationofalternativetreatmenteffects
_version_ 1718382703273836544