Statistical learning goes beyond the d-band model providing the thermochemistry of adsorbates on transition metals
Assessing catalytic mechanisms using DFT calculations greatly aids catalyst design, but is impractical for large molecules. Here the authors develop a statistical learning-based thermochemical model for estimating adsorption of organics onto metals, retaining DFT accuracy while reducing the number o...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bcfedd75f53c4af9ad17dc158fdf3102 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|