Statistical learning goes beyond the d-band model providing the thermochemistry of adsorbates on transition metals

Assessing catalytic mechanisms using DFT calculations greatly aids catalyst design, but is impractical for large molecules. Here the authors develop a statistical learning-based thermochemical model for estimating adsorption of organics onto metals, retaining DFT accuracy while reducing the number o...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Rodrigo García-Muelas, Núria López
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/bcfedd75f53c4af9ad17dc158fdf3102
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Assessing catalytic mechanisms using DFT calculations greatly aids catalyst design, but is impractical for large molecules. Here the authors develop a statistical learning-based thermochemical model for estimating adsorption of organics onto metals, retaining DFT accuracy while reducing the number of calculations by a factor of 20.