Statistical learning goes beyond the d-band model providing the thermochemistry of adsorbates on transition metals

Assessing catalytic mechanisms using DFT calculations greatly aids catalyst design, but is impractical for large molecules. Here the authors develop a statistical learning-based thermochemical model for estimating adsorption of organics onto metals, retaining DFT accuracy while reducing the number o...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Rodrigo García-Muelas, Núria López
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/bcfedd75f53c4af9ad17dc158fdf3102
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:bcfedd75f53c4af9ad17dc158fdf3102
record_format dspace
spelling oai:doaj.org-article:bcfedd75f53c4af9ad17dc158fdf31022021-12-02T14:38:43ZStatistical learning goes beyond the d-band model providing the thermochemistry of adsorbates on transition metals10.1038/s41467-019-12709-12041-1723https://doaj.org/article/bcfedd75f53c4af9ad17dc158fdf31022019-10-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-12709-1https://doaj.org/toc/2041-1723Assessing catalytic mechanisms using DFT calculations greatly aids catalyst design, but is impractical for large molecules. Here the authors develop a statistical learning-based thermochemical model for estimating adsorption of organics onto metals, retaining DFT accuracy while reducing the number of calculations by a factor of 20.Rodrigo García-MuelasNúria LópezNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-7 (2019)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Rodrigo García-Muelas
Núria López
Statistical learning goes beyond the d-band model providing the thermochemistry of adsorbates on transition metals
description Assessing catalytic mechanisms using DFT calculations greatly aids catalyst design, but is impractical for large molecules. Here the authors develop a statistical learning-based thermochemical model for estimating adsorption of organics onto metals, retaining DFT accuracy while reducing the number of calculations by a factor of 20.
format article
author Rodrigo García-Muelas
Núria López
author_facet Rodrigo García-Muelas
Núria López
author_sort Rodrigo García-Muelas
title Statistical learning goes beyond the d-band model providing the thermochemistry of adsorbates on transition metals
title_short Statistical learning goes beyond the d-band model providing the thermochemistry of adsorbates on transition metals
title_full Statistical learning goes beyond the d-band model providing the thermochemistry of adsorbates on transition metals
title_fullStr Statistical learning goes beyond the d-band model providing the thermochemistry of adsorbates on transition metals
title_full_unstemmed Statistical learning goes beyond the d-band model providing the thermochemistry of adsorbates on transition metals
title_sort statistical learning goes beyond the d-band model providing the thermochemistry of adsorbates on transition metals
publisher Nature Portfolio
publishDate 2019
url https://doaj.org/article/bcfedd75f53c4af9ad17dc158fdf3102
work_keys_str_mv AT rodrigogarciamuelas statisticallearninggoesbeyondthedbandmodelprovidingthethermochemistryofadsorbatesontransitionmetals
AT nurialopez statisticallearninggoesbeyondthedbandmodelprovidingthethermochemistryofadsorbatesontransitionmetals
_version_ 1718390916047175680