Statistical learning goes beyond the d-band model providing the thermochemistry of adsorbates on transition metals
Assessing catalytic mechanisms using DFT calculations greatly aids catalyst design, but is impractical for large molecules. Here the authors develop a statistical learning-based thermochemical model for estimating adsorption of organics onto metals, retaining DFT accuracy while reducing the number o...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bcfedd75f53c4af9ad17dc158fdf3102 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:bcfedd75f53c4af9ad17dc158fdf3102 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:bcfedd75f53c4af9ad17dc158fdf31022021-12-02T14:38:43ZStatistical learning goes beyond the d-band model providing the thermochemistry of adsorbates on transition metals10.1038/s41467-019-12709-12041-1723https://doaj.org/article/bcfedd75f53c4af9ad17dc158fdf31022019-10-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-12709-1https://doaj.org/toc/2041-1723Assessing catalytic mechanisms using DFT calculations greatly aids catalyst design, but is impractical for large molecules. Here the authors develop a statistical learning-based thermochemical model for estimating adsorption of organics onto metals, retaining DFT accuracy while reducing the number of calculations by a factor of 20.Rodrigo García-MuelasNúria LópezNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-7 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Rodrigo García-Muelas Núria López Statistical learning goes beyond the d-band model providing the thermochemistry of adsorbates on transition metals |
description |
Assessing catalytic mechanisms using DFT calculations greatly aids catalyst design, but is impractical for large molecules. Here the authors develop a statistical learning-based thermochemical model for estimating adsorption of organics onto metals, retaining DFT accuracy while reducing the number of calculations by a factor of 20. |
format |
article |
author |
Rodrigo García-Muelas Núria López |
author_facet |
Rodrigo García-Muelas Núria López |
author_sort |
Rodrigo García-Muelas |
title |
Statistical learning goes beyond the d-band model providing the thermochemistry of adsorbates on transition metals |
title_short |
Statistical learning goes beyond the d-band model providing the thermochemistry of adsorbates on transition metals |
title_full |
Statistical learning goes beyond the d-band model providing the thermochemistry of adsorbates on transition metals |
title_fullStr |
Statistical learning goes beyond the d-band model providing the thermochemistry of adsorbates on transition metals |
title_full_unstemmed |
Statistical learning goes beyond the d-band model providing the thermochemistry of adsorbates on transition metals |
title_sort |
statistical learning goes beyond the d-band model providing the thermochemistry of adsorbates on transition metals |
publisher |
Nature Portfolio |
publishDate |
2019 |
url |
https://doaj.org/article/bcfedd75f53c4af9ad17dc158fdf3102 |
work_keys_str_mv |
AT rodrigogarciamuelas statisticallearninggoesbeyondthedbandmodelprovidingthethermochemistryofadsorbatesontransitionmetals AT nurialopez statisticallearninggoesbeyondthedbandmodelprovidingthethermochemistryofadsorbatesontransitionmetals |
_version_ |
1718390916047175680 |