Statistical learning goes beyond the d-band model providing the thermochemistry of adsorbates on transition metals
Assessing catalytic mechanisms using DFT calculations greatly aids catalyst design, but is impractical for large molecules. Here the authors develop a statistical learning-based thermochemical model for estimating adsorption of organics onto metals, retaining DFT accuracy while reducing the number o...
Guardado en:
Autores principales: | Rodrigo García-Muelas, Núria López |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bcfedd75f53c4af9ad17dc158fdf3102 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Alkaloids and Selected Topics in Their Thermochemistry
por: Maja Ponikvar-Svet, et al.
Publicado: (2021) -
Between Local and Global Teyyam Goes Cyber and Beyond
por: Giorgio De Martino
Publicado: (2021) -
Scaling relationships and theory for vibrational frequencies of adsorbates on transition metal surfaces
por: Joshua L. Lansford, et al.
Publicado: (2017) -
Band structure engineering of NiS2 monolayer by transition metal doping
por: H. Khalatbari, et al.
Publicado: (2021) -
CONSTRUCTIVISM GOES QUANTUM: THE APPROACH REFORM
por: T. A. Alekseeva, et al.
Publicado: (2016)